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WINE ALCOHOLIC FERMENTATION



Lactic acid bacteria

contamination

 Fermentation temperature is too low or too high

 Lack of oxygen available to the yeast

 Poorly prepared yeast starter

 Lack of nutrients

 pH is too low
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PROCESS ANALYTICAL TECHNOLOGY

“ a system for designing, analyzing, and controlling manufacturing through timely 

measurements (i.e., during processing) of critical quality and performance 

attributes of raw and in-process materials and processes, with the goal of 

ensuring final product quality” (1)

(1) “Guidance for industry: PAT” -2004, U.S. Food and Drug Administration (FDA)
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AETTUANTED TOTAL REFLECTANCE (ATR) MIR SPECTROSCOPY

Advantages:

 Fast

 Easy to use

 Long-term economic

 Little or no pretreatment

 Portable

Valuable

PAT tool

A single drop of sample



AIM OF THE STUDY

To determine the usefulness of an ATR-MIR portable device for at-line monitoring 

of small-scale wine fermentations, prior to PAT implementation.

To detect different undesirable deviations in must fermentation using ATR-MIR 

and multivariate analysis

To propose a process control methodology easy to implement and understand 



WORK FLOW
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WORK FLOW

ATR-MIR

Spectra

1,5ml

Standard analysis : 

Density/sugars

pH 
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3 replicates

32 scans

8 cm-1 resolution

Air background

ATR-MIR analysis:

350 ml

18°C

Small-scale wine 

fermentations



MULTIVARIATE ANALYSIS
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ATR-MIR SPECTRA
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PARAMETER PREDICTION (DENSITY)
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RMSEC: 0,0011 g·mL-1

RMSECV: 0,0012 g·mL-1
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SLUGGISH FERMENTATIONS 
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SLUGGISH FERMENTATIONS 
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FINGERPRINT REGION
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LACTIC ACID BACTERIA SPOILAGE

Raw Spectra (1320 to 1082 cm-1) 1st derivative, SNV and  Mean Center



LACTIC ACID BACTERIA SPOILAGE
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MULTIVARIATE STATISTICAL PROCESS CONTROL (MSPC)
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MULTIVARIATE STATISTICAL PROCESS CONTROL (MSPC)
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CONCLUSIONS & FUTURE PERSPECTIVES

 ATR-MIR and PLSR allow the prediction of density with a low RMSECV (0.0012 g··mL-1) 
throughout the whole alcoholic fermentation process.

 Sluggish alcoholic fermentations were detected at an early stage using PLSDA models.

 Lactic acid bacteria contamination can be early predicted using MSPC charts before the 
end of alcoholic fermentation, giving the possiblity to apply corrective measures.

 The addition of new batches from different fermentations should be studied closely in 
order to minimize between-experiments variability.

 Early detection of other fermentation deviations will be considered (e.g. stuck
fermentations).
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