

APPLICATION OF ATR-MIR AND CHEMOMETRICS FOR THE EARLY DETECTION OF DEVIATIONS DURING THE WINE ALCOHOLIC FERMENTATION PROCESS

Julieta Cavaglia, Daniel Schorn-García, Barbara Giussani, Olga Busto, Laura Aceña,

Joan Ferré, Montserrat Mestres, Ricard Boqué

REMOTE SUMMIT ON FOOD QUALITY CONTROL ANALYTICAL APPROACH 28TH MAY 2020

WINE ALCOHOLIC FERMENTATION

FERMENTATION PROCESS CONTROL

PROCESS ANALYTICAL TECHNOLOGY

" a system for designing, analyzing, and controlling manufacturing through timely measurements (i.e., during processing) of critical quality and performance attributes of raw and in-process materials and processes, with the goal of ensuring final product quality" ⁽¹⁾

1) "Guidance for industry: PAT" -2004, U.S. Food and Drug Administration (FDA)

AETTUANTED TOTAL REFLECTANCE (ATR) MIR SPECTROSCOPY

Diamond/KRS-5 crystal

Advantages:

✓ Fast
✓ Easy to use
✓ Long-term economic
✓ Little or no pretreatment
✓ Portable

Valuable PAT tool

AIM OF THE STUDY

•To determine the usefulness of an ATR-MIR portable device for *at-line* monitoring of small-scale wine fermentations, prior to PAT implementation.

To detect different undesirable deviations in must fermentation using ATR-MIR and multivariate analysis

To propose a process control methodology easy to implement and understand

WORK FLOW

Small-scale wine fermentations

+Wine must +yeast +activators &nutrients

+Wine must +yeast +lactic acid bacteria +activators &nutrients

+Wine must +yeast +activators &nutrients (less quantity)

WORK FLOW

Small-scale wine fermentations

MULTIVARIATE ANALYSIS

ATR-MIR SPECTRA

PARAMETER PREDICTION (DENSITY)

SLUGGISH FERMENTATIONS

PC1 scores for NOC and YAN batches 2 NOC YAN 1.5 Scores on PC1 (65.44%) O G O C O C O C O 맊 0.5 п п -1 80 100 160 1 Cumulative Time (Hours) 20 190 220 260 40 60

Exploratory Analysis PCA

SLUGGISH FERMENTATIONS

Discriminant Analysis PLSDA PLS Regression for classification

FINGERPRINT REGION

LACTIC ACID BACTERIA SPOILAGE

LACTIC ACID BACTERIA SPOILAGE

Exploratory Analysis PCA

MULTIVARIATE STATISTICAL PROCESS CONTROL (MSPC)

Q-residuals: A measure of the residual information between a sample and its projection.

Analysis of the process variations not explained in the NOC-PCA models.

NOC-PCA models are built to establish Qresdiuals control limits at a certain confidence in the charts.

New data are monitored using these limits.

MULTIVARIATE STATISTICAL PROCESS CONTROL (MSPC)

CONCLUSIONS & FUTURE PERSPECTIVES

- ATR-MIR and PLSR allow the prediction of density with a low RMSECV (0.0012 g-mL-1) throughout the whole alcoholic fermentation process.
- Sluggish alcoholic fermentations were detected at an early stage using PLSDA models.
- Lactic acid bacteria contamination can be early predicted using MSPC charts before the end of alcoholic fermentation, giving the possiblity to apply corrective measures.
- The addition of new batches from different fermentations should be studied closely in order to minimize between-experiments variability.
- Early detection of other fermentation deviations will be considered (e.g. stuck fermentations).

THANK YOU VERY MUCH FOR YOUR ATTENTION

Julieta Cavaglia Pietro

- julieta.cavaglia@urv.cat
- +34 977 55 84 96
- Universitat Rovira i Virgili Tarragona, Spain